Name _____

3) Evaluate: $\sqrt{3^2}$

3

±9

8.EE.A.2 ADDITIONAL PRACTICE

1) Evaluate the expressions in the table.

$\sqrt{0}$	$\sqrt{1}$	$\sqrt{4}$	√25	√49	√100
0	1	2	5	7	10

- **Answer Key**
- 2) Evaluate the expressions in the table.

³√0	∛1	³√8	∛ <mark>27</mark>
0	1	2	3

- **4)** The expression $(\sqrt{16})^2$ is equivalent to what number? 16
- 5) For what values of x makes the equation $x^{2} = 81$ true?
- 7) What is the missing value in the statement: $\sqrt[3]{?} = 4$ 64
- 9) Both sides of the equation $\sqrt{64} + \sqrt[3]{1} = \sqrt{81}$ simplify to what number? 9

- **6)** Solve for *a* in the equation: $36 = a^2$ ± 6
- **8)** Solve for x in the equation: $x^3 = 125$ 5

10) Why is $\sqrt{2}$ an irrational number? Answers may vary. $\sqrt{2}$ is an irrational number because 2 is not a perfect square

> $\sqrt{2}$ is an irrational number because it cannot be represented as a ratio of two numbers

 $\sqrt{2}$ is an irrational number because it is a non-terminating decimal that does not repeat

1 of 1